Share this post on:

Ike to thank the EU Expense action TD1003. Author Contributions The function presented in this paper is usually a collaborative development by both authors. Aysu Yarman performed the experiments and analyzed information. Both of your authors defined the study line along with the paper. Conflicts of Interest The authors declare no conflict of interest. References 1. two. three. four. Haupt, K.; Mosbach, K. Molecularly VEGFR1/Flt-1 Molecular Weight imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, one hundred, 2495504. Hayden, O.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Artificial antibodies for bioanalyte detection–Sensing viruses and proteins. Adv. Funct. Mater. 2006, 16, 1269278. Wulff, G. Fourty years of molecular imprinting in synthetic polymers: Origin, options and perspectives. Microchim. Acta 2013, 180, 1359370. Yarman, A.; Turner, A.P.F.; Scheller, F.W. Electropolymers for (nano-)imprinted biomimetic biosensors. In Nanosensors for Chemical and Biological Applications: Sensing with Nanotubes, Nanowires and Nanoparticles, 1st ed.; Honeychurch, K.C., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 12549. Li, J.; Jiang, F.; Wei, X. Molecularly imprinted sensor determined by an enzyme amplifier for ultratrace oxytetracycline determination. Anal. Chem. 2010, 82, 6074078. Yarman, A.; Scheller, F.W. Coupling biocatalysis with molecular imprinting in a biomimetic sensor. Angew. Chem. Int. Ed. Engl. 2013, 52, 115211525. Ouyang, R.; Lei, J.; Ju, H.; Xue, Y. A molecularly imprinted copolymer made for enantioselective recognition of glutamic acid. Adv. Funct. Mater. 2007, 17, 3223230.5. 6. 7.Sensors 2014, 14 8. 9. 10. 11.12. 13. 14. 15.16.Rashid, B.A.; Briggs, R.J.; Hay, J.N.; Stevenson, D. Preliminary evaluation of a molecular imprinted polymer for solid-phase extraction of tamoxifen. Anal. Commun. 1997, 34, 30306. Martin, P.D.; Wilson, T.D.; Wilson, I.D.; Jones, G.R. An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen. Analyst 2001, 126, 75759. Nie, F.; Lu, J.; He, Y.; Du, J. Use of molecule imprinting hemiluminescence S1PR3 site system for the determination of tamoxifen in breast cancer sufferers’ urine. Luminescence 2005, 20, 31520. Claude, B.; Morin, P.; Bayoudh, S.; de Ceaurriz, J. Interest of molecularly imprinted polymers inside the fight against doping: Extraction of tamoxifen and its primary metabolite from urine followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A 2008, 1196, 818. Wang, J.; Cai, X.; Fernandes, J.R.; Ozsoz, M.; Grant, D.H. Adsorptive potentiometric stripping analysis of trace tamoxifen at a glassy carbon electrode. Talanta 1997, 45, 27378. Guo, X.X.; Song, Z.J.; Tian, X.J.; Song, J.F. Single-sweep voltammetric determination of tamoxifen at carbon paste electrode. Anal. Lett. 2008, 41, 1225235. Daneshgar, P.; Norouzi, P.; Ganjali, M.R.; Zamani, H.A. Ultrasensitive flow-injection electrochemical approach for detection of anticancer drug tamoxifen. Talanta 2009, 77, 1075080. Radhapyari, K.; Kotoky, P.; Khan, R. Detection of anticancer drug tamoxifen applying biosensor according to polyaniline probe modified with horseradish peroxidase. Mater. Sci. Eng. C 2013, 33, 58387. Sadeghi, S.J.; Meirinhos, R.; Catucci, G.; Dodhia, V.R.; Nardo, G.D.; Gilardi, G. Direct electrochemistry of drug metabolizing human flavin-containing monooxygenase: Electrochemical turnover of benzydamine and tamoxifen. J. Am. Chem. Soc. 2009, 132, 45859.2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access short article distribut.

Share this post on:

Author: premierroofingandsidinginc